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ABSTRACT

Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with
a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each
supernova line-of-sight. We find that the correlation between this measurement and the Hubble
residuals is consistent with the prediction from lensing (at a significance of 1.7σ). Strong correlations
are also found between the residuals and supernova nuisance parameters after a linear correction is
applied. When these other correlations are taken into account, the lensing signal is detected at 1.4σ.
We show for the first time that distance estimates from supernovae can be improved when lensing
is incorporated by including a new parameter in the SALT2 methodology for determining distance
moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using
WMAP7, HST and BAO data, we find the best-fit value of the new lensing parameter and show that
the central values and uncertainties on Ωm and w are unaffected. The lensing of supernovae, while
only seen at marginal significance in this low redshift sample, will be of vital importance for the next
generation of surveys, such as DES and LSST, which will be systematics dominated.
Subject headings: cosmology: observations — distance scale – supernovae: general — surveys

1. INTRODUCTION

Type Ia supernovae (SNe Ia) are currently the best
cosmological “standard candles” and can be observed
to high redshift. Extensive searches for SNe Ia have
been carried out over the last decade to map the expan-
sion history of the Universe with cosmic time. Observa-
tions of SNe Ia have produced convincing evidence that
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the Universe has undergone a recent period of acceler-
ated expansion (Riess et al. 1998; Perlmutter et al. 1999;
Astier et al. 2006; Kessler et al. 2009b; Lampeitl et al.
2010a; Sullivan et al. 2011) leading to the inference that
the energy density of the Universe is dominated by “dark
energy”. By combining measurements of SNe Ia dis-
tances, over a wide range of redshift, with other cos-
mological probes such as measurements of the Cosmic
Microwave Background (CMB) and Baryon Acoustic Os-
cillations (BAO), the equation of state of dark energy is
known to an accuracy of 7% (Sullivan et al. 2011) and is
consistent with a cosmological constant.
While SNe Ia have been calibrated as “standard can-

dles”, their luminosities retain a significant scatter about
the best-fitting cosmological model, indicating that they
are influenced by additional effects such as extinction
(circumstellar and/or host galaxy dust), differences in
the SNe Ia progenitor, photometric calibration and pos-
sibly gravitational lensing. These systematic uncertain-
ties can increase the dispersion of the SNe Ia popula-
tion’s luminosity, and reduce the precision of the inferred
constraints on cosmological parameters. Recent results
from the Planck satellite (Planck Collaboration et al.
2013) show some tension between the value of Ωm deter-
mined by Planck and the most recent SNe Ia datasets,
suggesting that there could be residual systematic er-
rors in the SNe data that are not properly accounted
for. Forthcoming surveys of SNe Ia, such as the
Dark Energy Survey (Bernstein et al. 2012) and LSST
(LSST Science Collaboration et al. 2009), will observe
thousands of SNe to high redshift. Understanding and
correcting for these systematic uncertainties will be im-
portant for delivering the expected improvement in dark
energy constraints with these surveys.
Recent progress in improving the standardization of

SNe Ia has focussed on correlations between host galaxy
properties and the observed SNe parameters (Kelly et al.
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2010; Lampeitl et al. 2010b; Sullivan et al. 2010). A
strong correlation has been observed between the abso-
lute magnitude of SNe Ia and the total stellar mass of the
host galaxy. Applying this observed correlation does help
reduce the scatter on the Hubble diagram, thus improv-
ing the cosmological parameter estimates (Sullivan et al.
2011). However, the origin of this empirical correction re-
mains unclear (D’Andrea et al. 2011; Gupta et al. 2011;
Galbany et al. 2012; Hayden et al. 2013) and may evolve
with redshift.
One expected and well-understood cause for an in-

crease in the dispersion of SNe Ia magnitudes is the weak
gravitational lensing of SNe light by the intervening
matter along the line of sight (Frieman 1996; Holz 1998;
Metcalf 1999; Bergström et al. 2000; Amanullah et al.
2003; Ménard et al. 2003; Holz and Linder 2005;
Cooray et al. 2006; Amendola et al. 2010; Marra et al.
2013). Correlations between the background SNe (point
sources) and the foreground clustered mass will cause
SNe Ia to appear brighter, relative to the mean of the
SNe Ia population, when the lensing convergence along
the line of sight is positive, and conversely de-magnified
when it is negative. (Note that there is an additional
Doppler contribution to the convergence which acts in
the opposite sense and can be significant at low redshifts
(Bolejko et al. 2013).) This effect will not significantly
bias the cosmological parameters (Sarkar et al. 2008;
Jönsson et al. 2008), but if uncorrected, will cause
additional scatter in the observed SNe Ia magnitudes
leading to an increase in their distance uncertainty.
This additional dispersion is greater at high redshifts
due to the additional extent of the light-path. Wang
(2000) used simulated data with weak lensing noise
to show that the estimated cosmological parameters
will be unbiased if the fitting is carried out in flux
space, suggesting a flux-averaging approach as lensing
conserves total flux.
Several studies have addressed the expected increased

dispersion in SNe Ia magnitudes due to weak gravi-
tational lensing. Wambsganss et al. (1997) considered
ray–tracing in cosmological simulations and found an in-
creased scatter of 0.02mag for SNe Ia at z = 0.5, while
Ménard et al. (2003) and Takada and Hamana (2003)
showed that lensing causes variations of δm . 0.01.
These effects are presently sub-dominant to the cur-
rent SNe Ia magnitude uncertainties of δm ≃ 0.15mag.
Frieman (1996) show that for sources at z = 1, den-
sity fluctuations could increase the observed dispersion
by 30%. Gunnarsson et al. (2006) showed that for a SNe
Ia at z = 1.5, the dispersion due to lensing is comparable
to the intrinsic SNe Ia scatter, and introduced a method
to reduce the scatter from 7% to 3%.
The effect of lensing on high redshift SNe Ia datasets

has been studied by several authors. Williams and Song
(2004) used a sample of 55 SNe Ia with z ≥ 0.35 from
the Supernova Cosmology Project and High-z Super-
nova Search datasets (Tonry et al. 2003) and correlated
their brightness with foreground galaxies from the APM
Northern Sky Catalogue (Irwin et al. 1994). They de-
tected a correlation consistent with lensing at the > 99%
confidence level, but the observed difference of 0.3mag,
between the most magnified and de–magnified SNe Ia, is
far larger than expected. Ménard and Dalal (2005) used
44 SNe Ia from the Riess et al. (2004) dataset in combi-

nation with galaxies from the photometric catalogue of
the Sloan Digital Sky Survey (SDSS) and found no de-
tectable correlation on scales of one to ten arcminutes.
Wang (2005) convolved the intrinsic distribution of SN
Ia, using the (Riess et al. 2004) sample, with magnifica-
tion distributions of point sources, finding marginal evi-
dence for a non-Gaussian tail at high redshift, and a shift
in the peak brightness towards the faint end, both indi-
cators of weak lensing. Mörtsell et al. (2001) considered
SN 1997ff at z = 1.77 and showed that careful mod-
eling of foreground galaxies is required to estimate the
lensing signal, finding a large range of possible magnifi-
cations. Jönsson et al. (2007) found a signal consistent
with lensing at ∼ 90% confidence level using 26 SNe in
the GOODS field and an aperture of one arcminute to
estimate the foreground galaxy density.
Recently, several authors have looked for lensing using

the larger, more homogeneous, three-year data release
of the Supernova Legacy Survey (SNLS) (Astier et al.
2006). Kronborg et al. (2010) combined this dataset
with a deep photometric catalogue of foreground galax-
ies (with inferred masses) to find evidence for a lensing
signal at 2.3σ, while Jönsson et al. (2010) detected a sig-
nal at 92% confidence, simultaneously constraining the
properties of the galaxy dark matter haloes. However,
Karpenka et al. (2012) obtained only a marginal detec-
tion of a lensing signal when using a Bayesian analysis
of the same dataset, and only found weak constraints on
the dark matter halo parameters.
The expected lensing contribution to the scatter of SNe

Ia magnitudes is not anticipated to be strong for current
SNe Ia samples, due to the small number of confirmed
SNe Ia, the limited redshift range surveyed and photo-
metric uncertainties. However, with future surveys, such
as DES and LSST producing thousands of SNe Ia to
z > 1, the gravitational lensing effect should become im-
portant, especially to achieve the required high precision
on the cosmological parameters. It is therefore important
to develop a model-independent formalism to character-
ize and account for this effect.
In this paper, we develop a scheme to measure and

correct for the effect of weak gravitational lensing on
type Ia supernova distances. Using a new sample of
608 SNe Ia obtained from the SDSS-II SNe Survey, with
0.2 < z < 0.6, supplemented by spectroscopic redshifts
observed as part of the BOSS survey (Eisenstein et al.
2011; Dawson et al. 2013), we correlate this SNe sample
with foreground galaxies from SDSS-III to constrain the
possible lensing signal. We also extend previous analyses
by simultaneously constraining the lensing signal along-
side other SNe nuisance parameters, thus improving the
standardization of SNe Ia.
The outline of this paper is as follows. In §2 we de-

scribe the SNe Ia and galaxy data used in this analysis.
§3 describes the analysis used to estimate the lensing sig-
nal, while in §4, we present the measured correlation, and
its impact on the cosmological parameters. In §4.4, we
discuss how the lensing signal will affect the inferred dis-
tances to SNe Ia and constrain the bias of our foreground
galaxy sample. Finally, we conclude in §5.
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2. DATA

2.1. The SDSS-II Supernova Survey

From 2005 to 2007, the SDSS-II SN Survey
(Frieman et al. 2008; Sako et al. 2008) carried out a ded-
icated search for intermediate-redshift SNe Ia from re-
peated scans of the equatorial “Stripe82” region cov-
ering a total of 300deg2. The SDSS 2.5m Telescope
(Gunn et al. 1998) carried out multi-colour ugriz imag-
ing for three months a year (September to November)
with an average cadence of 3 days. Using a suite of in-
ternational telescopes (Zheng et al. 2008; Östman et al.
2011; Konishi et al. 2011b), over 500 SNe Ia were spec-
troscopically confirmed, with several thousand additional
probable SNe Ia identified through their high quality
light-curves.
This sample of SDSS-II SNe Ia has now been

used to constrain cosmological parameters (Kessler et al.
2009a; Lampeitl et al. 2010a; Sollerman et al. 2009),
measure the SNe Ia rate (Dilday et al. 2008, 2009;
Smith et al. 2012), examine the rise-time distribution
(Hayden et al. 2010) and study the correlation between
SNe Ia and their host galaxies (Lampeitl et al. 2010b;
D’Andrea et al. 2011; Gupta et al. 2011; Galbany et al.
2012; Hayden et al. 2013) and spectroscopic indicators
(Nordin et al. 2011a,b; Konishi et al. 2011a).

2.2. BOSS Ancillary Program

In 2009, an ancillary program was initiated as part
of the SDSS-III Baryon Oscillation Spectroscopic Sur-
vey (BOSS) (Olmstead et al. 2013; Dawson et al. 2013)
to obtain the spectra and redshifts of the host galax-
ies of a large sample of supernova candidates detected
by the SDSS-II SN Survey. This program was designed
to understand possible incompletenesses and biases in
the original real-time spectroscopic follow-up. In total,
spectra were obtained for 3761 host galaxies, producing
3520 confirmed redshifts of SNe candidates (and other
transients) to a limiting galaxy magnitude of r < 22.0.
Full details of the target selection and data reduction for
this sample of galaxies can be found in Campbell et al.
(2013), while details of the data analysis and redshifts
for the sample are presented in Olmstead et al. (2013).
The details of how a robust cosmological Hubble di-

agram is constructed using these host galaxy redshifts
in conjunction with the original SDSS-II SNe light curve
data is presented in Campbell et al. (2013). Using a com-
bination of the PSNID (Sako et al. 2011) and SALT2
(Guy et al. 2007) techniques, combined with stringent
data-quality cuts, a new and robust sample of 752 pho-
tometrically classified SNe Ia covering a redshift range
0.05 < z < 0.55 was constructed from the BOSS and
SDSS-II galaxy samples. Using realistic simulations,
Campbell et al. (2013) showed that this sample is over
70% efficient in detecting SNe Ia over this redshift range,
with only 4% probable contamination from non-Ia su-
pernovae. Campbell et al. (2013) further demonstrated
that this sample provides competitive cosmological con-
straints, compared to the spectroscopically confirmed
samples from SNLS.
For this work, the distance modulus to a SNe Ia is

determined using the SALT2 light-curve fitting method
(Guy et al. 2007) and is defined as

µ = mB −M + αx1 − βc+ µcorr(z), (1)

where mB = 10.635 − 2.5 logx0. x0, x1 and c are SNe
parameters determined through fitting of the individ-
ual light-curves, and correspond to the peak magnitude,
stretch and color of each SNe. Here M is the absolute
peak magnitude of a standard SNe Ia (assumed to be
-19.0 for this analysis) and α and β are global SALT2
parameters that describe the relationship between the
stretch and colour of an SNe Ia and the absolute bright-
ness. We also include a correction for Malmquist bias
(µcorr(z)) which is discussed, and calculated for this sam-
ple, in Campbell et al. (2013).
For our fiducial analysis, we use α = 0.22, β = 3.12 and

the best-fitting cosmology taken from Campbell et al.
(2013) of (Ωm,ΩΛ,Ωk, w) = (0.27, 0.73, 0.0,−0.95) and
H0 = 73.2kms−1 Mpc−1 from the SHOES survey
(Riess et al. 2011). As with other SNe analyses, we
also include an intrinsic dispersion for the sample of
σint = 0.12, which provides a reduced χ2 close to unity
for the best fit. To remove possible bias from large out-
liers, which can significantly impact any correlation, a
5σ clip on residuals from the Hubble diagram using the
best-fitting cosmological parameters, has been applied to
the data, removing three SNe Ia in total, reducing our
sample to 749 SNe Ia.
Figure 1 gives the Hubble diagram for the 749 photo-

metrically classified SNe Ia taken from Campbell et al.
(2013) and Figure 2 shows the redshift histogram for
these SNe Ia. Our fiducial sample consists of 608 SNe
Ia with 0.2 < z < 0.6. This selection is discussed in §3.
This is one of the largest SNe Ia datasets in existence and
is appropriate for the lensing study discussed in this pa-
per because of the uniform selection, consistent relative
photometric calibration (all of the SNe Ia data is from a
single survey) and high completeness. The sample also
pushes to higher redshift than the spectroscopically con-
firmed SNe sample of SDSS-II, which helps in our search
for a gravitational lensing signal.

2.3. Spectroscopic Galaxy Catalogue

In addition to background SNe, we need tracers of
the foreground mass density in order to obtain a lens-
ing correlation between SNe brightness and foreground
density. Ideally, these foreground tracers would have ac-
curate spectroscopic redshifts allowing us to unambigu-
ously determine their location relative to the SNe. This
also facilitates a better prediction of the expected lens-
ing signal taking into account the relative distances be-
tween us, the SNe and foreground lenses. Fortunately the
“Stripe82” region of the SDSS has a significantly higher
density of spectroscopic data compared to the average
for SDSS due to a number of other ancillary programs
as outlined in the Data Release 8 (DR8) of the SDSS
(Aihara et al. 2011). In total, there are over 800,000
spectroscopic galaxy redshifts in DR8 in the “Stripe82”
region.
We have not used all these galaxy redshifts, but in-

stead use only the ancillary programs with well-defined
selection criteria that span the whole area of “Stripe82”.
In this way, we can be more confident of the homogene-
ity of the selection, which is important for studying the
expected small lensing signal. First, we use galaxies se-
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Fig. 1.— Upper: Hubble diagram for the 749 SNe used in this analysis. Lower: Residuals from the above Hubble diagram, considering
the best-fitting cosmology from Campbell et al. (2013). The redshift cut of z > 0.2, used to define the fiducial sample, is also shown.

lected by the standard SDSS-I/II Legacy Survey, namely
the Main Galaxy Sample (MGS; Strauss et al. 2002) con-
sisting of 22918 galaxies. In addition, we use a sample
of 19589 galaxies from the Low-z LRG program, which
carried out a survey of low-redshift galaxies to two mag-
nitudes fainter than the MGS in order to add more low-
luminosity galaxies to the MGS, and included a deeper
sample of LRGs and Brightest Cluster Galaxies. Finally,
we use 28124 galaxies from the Southern program, exe-
cuted on the Equatorial stripe in the Southern Galactic
Cap, designed to create a region of the sky where the
MGS is close to 100% complete. Details of these ancillary
programs can be found in Aihara et al. (2011) and on
the DR8 webpage18. Together, these sub-samples com-
bine to give 70,631 galaxies with a spectroscopic redshift
spread over the“Stripe82” region. We show the redshift
histogram of these different samples in Figure 2.

3. ESTIMATING THE LENSING SIGNAL

In this section we describe the estimator used to predict
the expected lensing signal for a given SNe, at redshift
z, and discuss the robustness of this estimator.
Assuming a flat Universe (Ωk = 0), the convergence, κ

for a source on a particular line-of-sight can be approxi-
mated by,

κ =
3H0

2Ωm

2c2

∑

i

∆χi
χi

(χSN − χi)

χSN

δi
ai
, (2)

where the matter distribution along the line-of-sight
is binned into shells in redshift (zi) with correspond-
ing co-moving distances of χi and bin width ∆χi

18 http://www.sdss3.org/dr8/algorithms/special target.php

(Bartelmann and Schneider 2001). Here H0 is the Hub-
ble constant, Ωm is the matter density parameter, c is
the speed of light, ai is the scale factor for bin i, and δi
is the overdensity of matter in the ith bin. The source
co-moving distance is given by χSN; in our case, this
source is a SNe Ia. A line-of-sight with κ > 0 should, on
average, result in a brightening of a SNe Ia.
Equation 2 predicts the convergence based on the

true matter distribution along a given line-of-sight. In
§2.3, we introduced a sample of galaxies that can be
used to trace that matter distribution. This distribu-
tion can be considered a sample of point sources that,
when smoothed, approximates the underlying matter dis-
tribution. We estimate κ by replacing δi in Equation
2 with δni

= [n(zi)− n̄(zi)]/n̄(zi), which is the galaxy
over-density in a given redshift bin compared to the
mean number density in that redshift bin (n̄(zi)), deter-
mined from our sample of 70,631 galaxies spanning the
“Stripe82” region. However, any sample of galaxies will
be biased with respect to the distribution of dark mat-
ter. Assuming a linear bias b between the galaxy sample
and the underlying distribution of matter, we can relate
the true value of κ to that measured through the galaxy
distribution, using κ = κgal/b.
The uncertainty on κgal due to Poisson noise is

σ2
κ =

3H0
2Ωm

2c2

∑

i

∆χi
χi

(χSN − χi)

χSN

1

ai
×

1

n̄i

. (3)

In practice, we must determine κgal, for a given SNe
light–of–sight, using an aperture centered on each back-
ground SNe. This methodology is illustrated in Figure 3
where we show a portion of the “Stripe82” area and high-

http://www.sdss3.org/dr8/algorithms/special_target.php
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Fig. 2.— Normalized redshift distribution for the SNe Ia (red) and galaxies used in this analysis, as described in §2. The redshift
histograms for the three galaxy sub-samples are shown cumulatively.

light the SNe and galaxies in this region. We use a 12 ar-
cminute radius aperture around each SNe which we have
determined to be the optimal radius for our measure-
ment. In Appendix A, we show that the choice between
angular or cylindrical apertures does not substantially
affect our measurement, while in Appendix B we show
our results depend on the choice of aperture considered.
We re-scale the number density of galaxies in apertures
that fall partially outside the boundaries of “Stripe82” .
Unless otherwise stated, we assume angular apertures of
12 arcminutes throughout this paper. Dalal et al. (2003)
find that a considerable fraction of the lensing dispersion
derives from subarcminute scales caused by the substan-
tial small-scale power in the mass distribution at these
scales. Our estimate of κgal, while not probing these
scales, is a smoothed estimate of the underlying κ distri-
bution.
For random lines of sight, Weinberg (1976) shows that

at a fixed redshift, the mean convergence κ̄ is zero and the
dispersion σκ increases with increasing redshift. To test
whether our SNe Ia positions are consistent with random
lines-of-sight, we show in Figure 4 the distribution of κgal

as a function of redshift for the 749 SNe Ia in our sample
and the SDSS foreground galaxies. We observe that, on
average, at a fixed redshift, κ̄ = 0, while σκ increases with
redshift. To further test this hypothesis, we randomized
the SNe positions within the “Stripe82” region, and re-
peated the measurement. Figure 5 shows a normalized
histogram of the distribution of κgal for the 749 SNe Ia
compared to 1000 realizations of 749 random positions
within the “Stripe82” region. The randomized positions
have σκ = 3.65 × 10−3, consistent with the 749 SNe Ia
positions, which have σκ = 3.56× 10−3. A Kolmogorov-
Smirnov test (K-S test, see Chakravarti et al. 1967) com-

paring these distributions gives a probability of 0.79, in-
dicating that our SNe Ia positions are likely not different
from those of random lines of sight .
Figure 4 shows that the dispersion on the convergence

increases with increasing redshift. Since SNe with z <
0.2 do not have a significant κgal along their lines of sight,
due to the limited volume probed at these redshifts, we
only consider supernovae with z > 0.2 for our analysis,
reducing our sample to 608 SNe Ia. The implications of
this cut are discussed in Appendix C.

4. RESULTS

4.1. Correlating galaxy density with SN Hubble residuals

Figure 6 shows, in grey, the observed correlation be-
tween the Hubble residuals (∆µ = µobs − µcosmo) of our
608 SDSS SNe Ia and our estimate of κgal along each
line–of–sight (with a fixed angular aperture of 12 arcmin-
utes), assuming the fiducial cosmology described in §4.4.
A dashed green line shown in Figure 6 indicates a null
correlation between these two quantities, while the red
line shows the best linear fit to the data. The mean val-
ues in bins of κgal are shown in blue, while the expected
lensing signal, discussed in §4.4, assuming a conservative
b = [0.5, 2] is shown as a blue band.
We use the Spearman’s rank correlation coefficient (ρ)

to statistically determine the significance of any correla-
tion seen in Figure 6, i.e., the best-fit red line. For an
aperture of 12 arcminutes, we find ρ = −0.068 ± 0.041,
which is a detection of a correlation of 1.7σ. This sig-
nificance is comparable to the 2.3σ correlation found by
Kronborg et al. (2010) using 233 SNe Ia from the SNLS
dataset and Jönsson et al. (2007) using 26 SNe Ia from
the GOODS field who found a tentative detection of
lensing at 90% confidence level. This limited signifi-
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Fig. 3.— An illustration of the methodology used to search for SNe lensing in our SDSS SNe sample. We only show a small portion of
the “Stripe82” field and highlight with crosses the SDSS SNe. Around each SNe, we show the projected 12 arcminute aperture used to
calculate κgal in cyan. We show galaxies within an aperture and in the foreground of a SNe as blue dots. Galaxies within an aperture, but
behind the SNe are shown in black.

cance correlation is consistent with the expected weak
lensing signal for our data. SNe Ia with κgal > 0 have
∆̄µ = −0.024± 0.017, compared to ∆̄µ = 0.010± 0.014
for those with κgal < 0.

4.1.1. Comparing to the expected lensing signal

To determine if the scatter we observe on κgal in Fig-
ures 4 and 6 is consistent with expectation, we estimate
the theoretical error on κ, by considering κ averaged in
an angular aperture of radius θ. Following the analy-
sis of Bartelmann and Schneider (2001), we calculate the
weight function, W̄ (χ), defined as,

W̄ (r) =

∫ χH

χ

dχ′G(χ′)
fκ(χ

′ − χ)

fκ(χ′)
, (4)

where χ is the comoving distance, and G(χ)dχ =
pz(z)dz. Assuming a flat Universe such that fk(χ) = χ,
we calculate Pκ, by integrating W̄ and the power spec-
trum (Pδ),

Pκ(l) =
9H4

0Ω
2
0

4c2

∫ wH

0

dχ
W̄ 2(χ)

a2(χ)
Pδ

(

l

fK(χ)
, χ

)

, (5)

where a is the scale factor. The rms scatter on κ, within
a circular aperture of radius θ is,

〈κ2
av(θ)〉 = 2π

∫

∞

0

ldlPκ(l)

[

J1(lθ)

πlθ

]2

, (6)

where J1(x) is the first order Bessel function of the first
kind. Considering an aperture of 12’, with (Ωm,ΩΛ, w) =

(0.3, 0.7,−1.0), σ8 = 0.8 and H0 = 70kms−1 Mpc−1

we use the package iCosmo (Refregier et al. 2011) to
calculate the non-linear power spectrum using the fit-
ting formula of Peacock and Dodds (1994) and determine
〈κ2

av(θ)〉 from Equations 4, 5 and 6. We find an expected
rms scatter on κ of 0.44% over the redshift range of
the BOSS supernova sample, consistent with the value
of 0.36% for our dataset as seen in Figures 4, 5 and 6.

4.1.2. Determining the source and significance of the
correlation

The mild correlation seen in Figure 6 could be due to
a systematic uncertainty or a manifestation of a different
astrophysical effect rather than weak gravitational lens-
ing, even though the sign of the observed effect is as ex-
pected from lensing (i.e. brighter residuals are seen along
lines of sight with positive κgal). In particular, recent
studies have shown that passive, more massive, galaxies
host brighter SNe Ia even after light-curve correlation
(Lampeitl et al. 2010c), and this could be responsible in
part for the correlation seen in Figure 6 as such massive
galaxies reside in high density regions (clusters) which
themselves are highly clustered.
To further test the correlation of ∆µ and κgal, we

also consider the supernova observables x1 (light curve
stretch) and c (color) as part of our Spearman correla-
tion coefficient analysis. In Table 1 we provide the Spear-
man’s rank correlation coefficient, ρ, and the significance
of any detection, for a suite of possible correlations be-
tween these SN observables and κgal. First, we see a
strong correlation between ∆µ, x1 and c, stronger than
that seen between ∆µ and κgal. This correlation is ob-
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Fig. 4.— The distribution of κgal as a function of redshift for the SDSS SNe sample, when a fixed aperture of 12 arcminutes is considered.
The mean values of κ in bins of δz = 0.025 are shown in red. The redshift cut of z > 0.2, used to define the fiducial sample, is given by the
green vertical line.

served after the supernova distances have been linearly
corrected using the global parameters α and β, as in
Equation 1, suggesting the possibility of non-linear cor-
rections being required. A correlation at 2.2σ is observed
between κgal and x1, such that SNe on overdense lines of
sight (κ > 0) have the smaller values of x1.
However, while this result indicates that there are sig-

nificant correlations between the parameters that we are
considering, it does not highlight the underlying source
of them. To study this, we use the the Partial Correla-
tion Coefficient, r. This statistic determines the cor-
relation between two variables when the effects of all
other variables considered are removed. This statistic
allows us to determine the residual correlation after the
correlations between other parameters have been consid-
ered. Table 2 shows the value of r (and its significance)
between each of the SNe observables considered in this
analysis, when correlations between all of the other pa-
rameters have been removed. For example, from Table 1
a correlation between ∆µ and x1 is observed at 12.0σ,
which is increased to 13.7σ when any correlations due
to c and κgal have been taken into consideration. From
Table 2 we observe that the significance of the correla-
tion between ∆µ and κgal is reduced from 1.7σ to 1.4σ
when other correlations are considered. The correlation
between κgal and x1 is also much reduced.
Ménard et al. (2010) correlated the brightness of high

redshift quasars with foreground galaxies to show the
presence of intergalactic dust distributed up to several
Mpc from galaxies. At large scales around galaxies, they
infer a value of RV ∼ 4 (which corresponds to a value
of β ∼ 5), indicating that the color correction may be
biased. However, our results show evidence for a corre-

lation between κgal and c at a significance of only 1.4σ.

4.2. Considering lensing when estimating SNe Ia
distances

We now attempt to determine if we can improve upon
the estimation of SNe Ia distances using a gravitational
lensing correction. To do this, we note that SNe Ia mag-
nitudes are affected by the convergence, which is corre-
lated with the measured value of κgal. We therefore in-
clude an additional global SNe Ia parameter, γκ in Equa-
tion 1 such that

µ = mB −M + αx1 − β c+ µcorr(z) + γκ κgal, (7)

and attempt to determine the value of γκ simultane-
ously with that of α and β in the cosmological fit. To
be fully consistent, we include the uncertainty on our
derived measurement of κgal in σµ, such that σ2

µ =

σ2
z + σ2

fit + σ2
int + σ2

κ, where σz is the uncertainty on
the measured redshift of each SNe Ia, σint is the intrin-
sic dispersion of SNe Ia (considered in this analysis to
be σint = 0.12, as described in §4.4) and σfit is the un-
certainty due to the light-curve fit, which includes the
uncertainties on x0, x1 and c. To include a low redshift
anchor to the Hubble diagram, we remove our minimum
redshift criteria of z > 0.2 imposed in §3, so that we
have a sample of 749 SN Ia, each with a measured value
of κgal. To avoid any uncertainty with the absolute mag-
nitude of an SNe Ia, we additionally include a constraint
for the value of H0 = 73.2 ± 8 km s−1 Mpc−1 from the
SHOES survey (Riess et al. 2011).
To determine the value of γκ, we fix the the cosmo-

logical parameters to those given in Table 3 and use
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Fig. 5.— Normalized histogram of the distribution of κgal for the sample of 749 SDSS SNe (in blue), compared to a sample produced
from 1000 realizations of 749 random positions within the “Stripe82” footprint (shown in red), when a fixed aperture of 12 arcminutes is
considered. The probability obtained from a K-S test is also shown.

TABLE 1
Spearman coefficient, ρ between various SNe

observables. The significance of each correlation is also
given in brackets.

c x1 κgal

∆µ −0.33± 0.04(8.1) 0.49± 0.04(12.0) −0.07± 0.04(1.7)
c - 0.10± 0.04(2.6) −0.05± 0.04(1.1)
x1 - - −0.09± 0.04(2.2)

TABLE 2
Partial Correlation Coefficient, r between various SNe
observables considered when the effect of all other

variables is removed. The significance of each
correlation is also given in brackets.

c x1 κgal

∆µ −0.44± 0.03(13.7) 0.56± 0.03(20.4) −0.06± 0.04(1.4)
c - 0.33± 0.04(9.2) −0.06± 0.04(1.4)
x1 - - −0.01± 0.04(0.2)

the Markov-Chain-Monte-Carlo (MCMC) sampler, cos-
moMC, to determine the values of α, β and γκ simulta-
neously.
Figure 7 shows the one-dimensional likelihood surface

for γκ for the sample of 749 SNe Ia used in this analysis.
The marginalised likelihood is shown as a solid line, the
mean likelihood as a dotted line, while κ = 0 is shown
in red. Marginalised parameter estimates (and 1σ un-
certainties) for the three parameters, α, β and γκ, are
given in Table 4. The recovered values of α and β are

consistent with the fiducial values used previously in this
analysis, while a value of γκ = 4.0± 3.6 is obtained. No
significant correlations between the 3 parameters are ob-
served. A minimal improvement in the best-fitting χ2 is
observed, with ∆χ2 = 1.5. When we vary σint we find
that the value of γκ changes negligibly and the value of
σint that gives a reduced χ2 = 1 does not depend on the
inclusion of the γκ parameter.
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Fig. 6.— κgal when a fixed angular radius of 12 arcminutes is considered compared to residuals from the Hubble diagram for the 608
SNe Ia in our sample, shown in grey. A line of best fit is shown in red, while the correlation between the two quantities is also given. The
anticipated correlation for our sample, assuming a conservative range of b = 0.5 to 2 is shown in blue. The mean values in bins of κgal are
shown in blue. The case of no correlation is shown as a green dashed line.

TABLE 3
Priors imposed on the fitted cosmological

parameters for the results in Table 4.

Parameter Fixed Cosmology Fitted Cosmology

Ωb 0.045 0.01,0.2
ΩDM 0.25 -0.2,1.2
Ωk 0.0 -1.0,1.0
w -1.0 -3.0,1.0
α 0.01,0.5 0.01,0.5
β 1.0,5.0 1.0,5.0
γκ -15.0,15.0 -15.0,15.0

TABLE 4
Summary of the supernova and cosmological parameter constraints as described in §4.2 and §4.3

Type of Fit Datasets Ωm w α β γ minimum χ2 ndof

Fixed Cosmology SNe Only 0.3 -1.0 0.20 ± 0.01 3.05± 0.11 0 866.05 747
Fixed Cosmology SNe Only 0.3 -1.0 0.20 ± 0.01 3.04± 0.11 4.0± 3.6 864.74 746
Fitted Cosmology SNe+CMB+BAO+H0 0.28± 0.02 −0.99± 0.09 0.20 ± 0.01 3.06± 0.11 0 8341.86 8742
Fitted Cosmology SNe+CMB+BAO+H0 0.28± 0.02 −0.98± 0.09 0.20 ± 0.01 3.05± 0.11 4.0± 3.6 8340.29 8741

4.3. Cosmological implications

Having shown that we can attempt to use the esti-
mated value of κgal in our estimation of µ for SNe Ia, we
now consider the implications that this additional cor-
relation can have on the inferred cosmological parame-
ters. In this analysis we combine the 749 SNe Ia in our
sample with data from the CMB power spectrum from
the seven-year Wilkinson Microwave Anisotropy Probe

(WMAP7) (Jarosik et al. 2011), Baryon Acoustic Oscil-
lation (BAO) results from SDSS DR7 main and LRG
samples (Percival et al. 2010) and the value of H0 de-
termined by the SHOES survey (Riess et al. 2011). We
adopt prior ranges on the cosmological parameters, as
given in Table 3, and using cosmoMC, constrain them si-
multaneously with the supernova nuisance parameters, α
and β and consider the implications when γκ is included
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Fig. 7.— Constraints on γκ when a cosmology with Ωm = 0.3,ΩΛ = 0.7 is considered and only the SNe Ia data (with σint = 0.12) are
used in the fit. The marginalized likelihood is shown as a solid blue line, the mean likelihood as a dotted line, while κ = 0 is shown in red.

in the fit.
The resulting marginalised constraints are given in Ta-

ble 4. The central values and uncertainties on Ωm and w
are unaffected by the addition of an additional parame-
ter. The value of γκ = 4.0 ± 3.6 is consistent with that
found when the cosmology is held fixed. The resulting
best-fit χ2 reduced by ∼ 1.5 when γκ is included.

4.4. Constraining the bias of our galaxy sample

We now use the results from 4.2 to study the bias
of our foreground galaxy sample. Jönsson et al. (2010)
show that to first order δDL/DL = −κ and δDL/DL =
∆µ ln(10)/5 for the change in DL due to lensing. There-
fore, for each SNe, the estimated distance modulus
should have increased scatter from lensing, such that
∆µ = −5κ/ ln (10).
However, as described in §3, we are using a sample of

foreground galaxies to trace the underlying dark matter
distribution along the line-of-sight to the SNe; therefore
our convergence estimate will miss fluctuations in den-
sity on small scales, and will also be affected by the bias
of our galaxy sample. We can write the true convergence
as κtrue = κwin + κex, where κwin is the convergence
averaged in our aperture and κex is the difference be-
tween this and the true convergence; κwin is only very
weakly correlated with κex. Assuming a linear bias b,
the windowed convergence is related to our estimator by
κwin = κgal/b. Then the distance moduli of the SNe Ia
will be altered so that

µobs = µtrue + 5 κgal/b ln (10) + 5κex/ ln (10) (8)

where µtrue is the unlensed distance modulus. The
third term will add extra scatter, but is not probed by

our method; the second term corresponds to the final
term of Equation 7. Therefore combining Equations 7
and 8, we anticipate a value of γκ = 5/b ln 10 ≃ 2.17/ b.
Our sample of SDSS foreground galaxies is comprised

of three major sub-samples with different selection cri-
teria (§2.3). As such, it is difficult to accurately esti-
mate the bias (b) for such a merged sample with re-
spect to the underlying matter distribution. However,
Seljak et al. (2005) estimate a value of b = 0.99±0.07 for
the SDSS MGS, which when combined with the South-
ern program, which has a similar selection criteria to the
MGS, comprise 72% of the galaxies in our sample, while
Kulkarni et al. (2007) estimate a value of b = 1.87± 0.07
for LRGs from SDSS DR3. Combining these estimates
produces an anticipated value of b = 1.24 ± 0.10 for
our foreground galaxy sample. Our measured value of
γκ = 4.0 ± 3.6, gives b = 0.54± 0.48, in excellent agree-
ment with the value measured for the SDSS MGS sample
and consistent with the value for of combined sample at
1.4σ.

5. CONCLUSIONS

In this paper, we have introduced a method to mea-
sure the effect of weak gravitational lensing on SNe Ia
distances and include this information when determin-
ing the cosmological parameters. To demonstrate this
scheme, we use a sample of 608 SNe Ia with spectro-
scopic host galaxy redshifts from the SDSS-II SNe and
BOSS surveys (Campbell et al. 2013), to z < 0.6. We
find,

• At a significance of 1.7σ there exists a correlation
between Hubble diagram residuals and the mea-
sured lensing convergence, κgal along lines-of-sight
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to the SNe Ia positions. This correlation is consis-
tent with the expected lensing signal such that SNe
Ia along lines of sight with κgal > 0 are brighter, af-
ter correction, than those with κgal < 0. This result
is observed when various aperture radii are consid-
ered, but peaks at an averaging radius for κgal of
12′ (Appendix A). The significance of our correla-
tion is comparable that found by Kronborg et al.
(2010) and Jönsson et al. (2010) using the SNLS
dataset and Jönsson et al. (2007) using 26 SNe Ia
from the GOODS field.

• For this dataset, we find a strong correlation (at
over 8σ) between ∆µ and other SNe Ia observables,
x1 and c after a linear correction for these variables
has been applied.

• We have studied whether the correlation between
∆µ and κgal can be explained through correlations
between other SNe Ia observables, and find that
when correlations including those between x1 and
c are considered, the inferred lensing signal is ob-
served at 1.4σ.

• We show that κgal and c are correlated at a signif-
icance of only 1.4σ, indicating that the correlation
between κgal and Hubble diagram residuals is not
caused by dust.

• To improve the standardisation of SNe Ia, we con-
sider an additional parameter, γκ, when determin-
ing the distance to a SNe Ia, using the SALT2 for-
malism, such that the distance is linearly related to
κgal. We constrain this parameter simultaneously
with other SNe Ia global parameters, α and β, and
find a value of γκ = 4.0± 3.6, fully consistent with
the expected result from lensing. When we vary
σint we find that the value of γκ changes negligibly
and the value of σint that gives a reduced χ2 = 1
does not depend on γκ indicating that the observed
dispersion in µ is not primarily caused by lensing.

• We combine our SNe Ia dataset with data from
WMAP7, SDSS BAO measurements and H0 mea-
surements from HST to constrain the standard cos-
mological model, when SNe Ia lensing is included
in the cosmological analysis. We find that the in-
clusion of an additional parameter based on κgal

does not affect the central values or uncertanties
on Ωm and w.

• We compare our value of γκ = 4.0 ± 3.6 to that
anticipated assuming a linear bias, and find b =
0.54 ± 0.48 for our sample of foreground galaxies,
entirely consistent with that found by galaxy clus-
tering analyses for the MGS.

Our obtained correlations and constraints on γκ are
not statistically significant due to the limited redshift
range covered by the BOSS sample and the relatively
small number of SNe Ia in our dataset. However, forth-
coming SNe surveys, such as the Dark Energy Survey
(Bernstein et al. 2012), will obtain well-measured light-
curves for thousands of SNe to z > 1, and thus be domi-
nated by systematic uncertainties. An understanding of
the lensing signal expected by these surveys is important

to produce the most accurate constraints on the equation
of state of Dark Energy, w.
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APPENDIX

A. CHOICE OF APERTURE

For an individual line-of-sight, we require a method for determining an aperture within which to count galaxies, in
order to describe the overdensity along that line-of-sight. In this appendix we investigate two approaches involving
fixed apertures around each SNe; we do not consider adaptive apertures here.
First, we consider an aperture of fixed angular radius (e.g. (Williams and Song 2004)). This is easy to define,

but suffers from the fact that the transverse physical separation between a SN Ia and a foreground galaxy is a
function of redshift. Secondly, we consider an aperture of fixed physical scale so that a galaxy of a fixed physical
transverse separation from the SN light–of–light is included. In this second case, we need to define the cosmological
background (in particular the Hubble constant, H0). For this test, we assume a flat Universe with Ωm = 0.3 and
H0 = 73.2kms−1 Mpc−1 (Riess et al. 2011).
We test the robustness of these two measurements against each other in Figure 8 (top panel). In this case, we have

compared a fixed angular aperture of 12 arcminutes and a fixed physical aperture of 3Mpc. The two estimates are
strongly correlated, with ρ = 0.86, indicating that either of these aperture measures will act as a similar proxy for
overdensity. We considered apertures from 8-15 arcminutes and 2-10Mpc and found a similar level of consistency.

B. OPTIMAL APERTURE SIZE

Having shown that our estimate of κgal is insensitive to the method used to determine the aperture, we now consider
how the aperture size considered affects the distribution of κgal. Smaller apertures are likely to be dominated by
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Fig. 8.— Top: κgal determined using a fixed angular aperture of 12′ compared to the case when a fixed physical aperture of 3Mpc is
considered. Bottom: κgal determined for an aperture of 5′ compared to that of 12′. In both cases, a line of best-fit is shown in red, with a
one-to-one correlation plotted in blue.

individual galaxies while larger radii will trace the mean matter distribution. The bottom panel of Figure 8 shows the
estimated value of κgal for two aperture radii; 5′ and 12′, respectively. The two distributions are strongly correlated,
with r = 0.57, indicating that at these scales the recovered value of κgal is robust to the aperture size considered.
We observe that in each case, κgal ∼ O(0.01), predicting a 1% lensing signal.
Next, we consider the optimal aperture size for our data and measurement. Using the Spearman correlation coefficient
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Fig. 9.— The Spearman’s rank correlation coefficient, ρ as a function of aperture radii considered, when a fixed angular size aperture is
considered. The data has been smoothed, and is overplotted in red. The uncertainty in the correlation coefficient is shown as a blue band.

and the data shown on Figure 6, we re-calculate ρ as a function of the aperture size used to calculate κgal, which is
then correlated with the Hubble residuals (µobs−µcosmo). We fix the cosmological and supernova nuisance parameters
as described in §4.4. In Figure 9, we show the value of ρ as a function of aperture size, and witness a clear “bump” in
the strength of the correlation between aperture sizes of 10 to 15 arcminutes, with the maximum near 12 arcminutes.
This observed signal is consistent with the expected lensing prediction, with a negative correlation indicating that SNe
with κgal > 0 are marginally brighter than those with κgal < 0, after correction. The reduction in the signal at larger
aperture radii is due to these apertures picking up other structures which are not causing the SNe lensing.

C. EFFECT OF A MINIMUM REDSHIFT LIMIT

In §3 we enforced that only SNe Ia with z > 0.2 are included in our fiducial sample. In this appendix we consider
the implications that this cut has on our results. Using the Spearman correlation coefficient discussed and the data
shown on Figure 6, we re-calculate ρ as a function of the minimum redshift used in the sample, which is then correlated
with the Hubble residuals (µobs − µcosmo). We fix the cosmological and supernova nuisance parameters as described
in §4.4. In Figure 10, we shows the value of ρ as a function of minimum redshift, and observe a clear increase in the
signal with increasing redshift, indicating that SNe Ia at higher redshifts are more sensitive to the lensing signal, as
expected. However, with the increasing minimum redshift, the size of our the resulting sample decreases, increasing
the inferred uncertainties. A signal is observed independent of the redshift cut considered.
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Fig. 10.— The Spearman’s rank correlation coefficient, ρ as a function of minimum redshift considered, when a fixed angular size aperture
of 12 arcseconds is considered. The uncertainty in the correlation coefficient is shown as a blue band.


